
Parallelization in OpenFOAM for HPC Deployment

Hands-on activities

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2024

1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)

Energy Conversion Group, NHR4CES - TU Darmstadt



Introductory activities



Activity 01: Blocking P2P comms - A first look

• parallelClass class has a lst_ member, initiated differently on each process.

• Your task is to append lst_ from all slave processes (1, 2 and 3) into a single list

object on master.

→ Using blocking P2P communication between master and a slave each time.

→ Append the lists in the order of process IDs.

→ Modify exercises/parallelClass.C file.

P1 sends lst_ P0 combines all lst_ lists

P2 sends lst_

P3 sends lst_

OPstream IPstream

OPstreamIPstream

OPstream

IPstream

Figure 1: Blocking P2P with master

Provided by NHR4CES, SDL Energy Conversion Group 1/20



Activity 02: Collective comms - A first look

• parallelClass::isPrime(int) is a primitive method to check if its argument is

a prime number.

→ But it’s serial code! Running it in parallel will duplicate work on all processes

→ Parallelizing it should yield performance gains

1. Domain Decomposition

→ This is done already if your data is mesh-related (mesh itself, fields, ... etc)

→ We need to ”decompose” the search range [3, sqrt(n)+1] into nProcs ranges.

→ parallelClass::next(int n, int& i) increments i to the next number in

process-controlled range

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2: Provided trivial decomposition of the range [3,
√
n+ 1]

Provided by NHR4CES, SDL Energy Conversion Group 2/20



Activity 02: Collective comms - A first look

2. Blocking P2P comms:

→ Transform parallelClass::isPrime(int) so that it acts on the corresponding

range on each of the 4 processes.

→ All processes must decide if it’s a prime number, based on results from all other process.

→ Think: collective comms. Although P2P comms also would work!

3. An alternate decomposition:

→ Each process is responsible for possible divisors that are nProcs apart.

→ Implement this behavior in parallelClass::next(int n, int& i)

3 7 11 154 8 12 165 9 136 10 14

Figure 3: A new example decomposition of the range [3,
√
n+ 1]

Provided by NHR4CES, SDL Energy Conversion Group 3/20



Activity 02: Collective comms - A first look

Is there room for improvement?

4. Decomposition effect

→ Different decompositions result in different loads on processes

→ In blocking comms, balanced decompositions are the most efficient

→ But keep in mind; if it takes too much time to decompose ”dynamically” - it might backfire!

5. Optimizing the code

→ A process can break out of loop and return if it finds a viable divisor.

→ But can’t stop calculations on all other processes.

→ Hence, apparently, not worth the trouble.

→ But, if all other processes also return early, we can gain some CPU time.

→ Maybe test only on prime numbers less than
√
n+ 1?

→ The whole parallelization idea was premature optimization, huh!

Provided by NHR4CES, SDL Energy Conversion Group 4/20



Activity 03: Blocking P2P comms are not good for your health

• Code in parallelClass::run() tries to perform 2 blocking P2P communication

operations between two processes.

→ When they hang; processes are killed by timeout.
• Your task is to modify the run member method so the code no longer hangs.

→ Pay attention to the order of the send/receive ops!

→ The Actual sending happens on *Pstream objects’ destruction

→ Do you think your solution would withstand MPI implementation swapping? (OpenMPI,

Intel MPI, MPICH ... etc)

P0 P1

OPstream IPstream

OPstreamIPstream

Figure 4: 2 Blocking P2P communication operations at the same time
Provided by NHR4CES, SDL Energy Conversion Group 5/20



Activity 04: Non-Blocking P2P comms for swapping ops

• Each process communicates a list object to its neighbour

→ Neighbouring relationships are based on mesh decomposition

→ parallelClass class has nProcs lists as a member variable lists_ (Each list is to be

transferred to the process’s neighbour)

• Your task is to perform an exchange of the lists so that, at the end of all transfers;

each process holds the lists from its neighbors (instead of its own ones).

→ This should be done in parallelClass::swapLists() method

→ Again in execises/parallelClass.C file

Provided by NHR4CES, SDL Energy Conversion Group 6/20



Activity 04: Non-Blocking P2P comms for swapping ops

li
st
s_
[2
]

li
st
s_
[0
]

Figure 5: Default (hierarchical) decomposition of the block-mesh in the cavity case

Provided by NHR4CES, SDL Energy Conversion Group 7/20



Activity 04: Non-Blocking P2P comms for swapping ops

li
st
s_
[2
]

li
st
s_
[0
]

Figure 5: Default (hierarchical) decomposition of the block-mesh in the cavity case

Provided by NHR4CES, SDL Energy Conversion Group 7/20



Activity 04: Non-Blocking P2P comms for swapping ops

OPstream IPstream

Figure 5: Default (hierarchical) decomposition of the block-mesh in the cavity case

Provided by NHR4CES, SDL Energy Conversion Group 7/20



Activity 05: Collective comms - Reference cell

• It’s popular to assign a reference cell if all BCs are gradient-based for a field:

Common pressure reference point in system/fvSolution

1 PISO
2 {
3 pRefPoint (0.0975 0.0025 0); // At far right-bottom cell of the cavity mesh
4 pRefValue 0;
5 }

→ Note that pRefCell is enough for most cases. Information propagated automatically

through processor patches!

• mesh.findCell(position); returns:

→ -1 if the position is outside the local mesh (on calling process).

→ cellID of the cell containing the position otherwise.

1. Your first task is to check if the provided position is inside the global mesh

→ Using collective comms; Think: Foam::reduce
→ Change parallelClass::checkPosition(const vector&) so it returns true if

given position is inside the mesh.

Provided by NHR4CES, SDL Energy Conversion Group 8/20



Activity 05: Collective comms - Reference cell

2. It’s useful for everyone to know which process has the corresponding reference cell

→ Change parallelClass::whoHasReferenceCell(const vector&) so it returns

-1 if position is outside the mesh; and returns the rank of the process which is

responsible for the reference cell otherwise.

→ Again, using collective comms.

P0 , cell not found here

v0

P1 , cell not found here

P2 , I have the cell!

v2

v1

v1v0 v0 v0v0

v0v0

v2v1

Figure 6: Suggested setup for reference cell communication

Provided by NHR4CES, SDL Energy Conversion Group 9/20



Activity 05: Collective comms - Reference cell

2. It’s useful for everyone to know which process has the corresponding reference cell

→ Change parallelClass::whoHasReferenceCell(const vector&) so it returns

-1 if position is outside the mesh; and returns the rank of the process which is

responsible for the reference cell otherwise.

→ Again, using collective comms.

P0 , OK, P2 has the cell

v0

P1 , cell not found here

P2 , I have the cell!

v2

v1v1v0 v0 v0v0

v0v0

v2v1

Gather here

Figure 6: Suggested setup for reference cell communication

Provided by NHR4CES, SDL Energy Conversion Group 9/20



Activity 05: Collective comms - Reference cell

2. It’s useful for everyone to know which process has the corresponding reference cell

→ Change parallelClass::whoHasReferenceCell(const vector&) so it returns

-1 if position is outside the mesh; and returns the rank of the process which is

responsible for the reference cell otherwise.

→ Again, using collective comms.

P0 , OK, P2 has the cell

v0

P1 , OK, P2 has the cell

P2 , I have the cell!

v2

v1v1v0 v0 v0v0

v0v0

v2v1

v0 v1

v0 v2

Scatter to all

Figure 6: Suggested setup for reference cell communication

Provided by NHR4CES, SDL Energy Conversion Group 9/20



Activity 06: Parallel comms for custom data types

• So, I wrote a class; now I want its objects to travel through processors.

→ parallelClass.H file declares an Edge class, to represent ”neighbouring relationship”

between two processors.

→ The goal is to build a graph of such edges.

1. Your first task is to make this Edge class compatible with random-access lists. I.e an

Edge object can be put in a list.

→ Try ./Alltest and take a look at compilation log.

→ Modify Edge class declaration/definition so that errors related to its compatibility with

List template disappear.

Provided by NHR4CES, SDL Energy Conversion Group 10/20



Activity 06: Parallel comms for custom data types

2. Implement operator<< and operator>> so that an Edge object can be

passed-to/read-from Output/Input streams.

→ Things should at least compile.

→ Compatibility of Edge with List is tested by the compiler.

→ There is also a check for correct graph communications when the graph is gathered then

scattered.

P0 null null null null null null P1

Figure 7: Typical way of sending custom objects through *Pstreams using Collective Comms

Provided by NHR4CES, SDL Energy Conversion Group 11/20



Activity 07: Special parallel comms for custom data types

• All good, but my class can’t have a null constructor!

→ Best solution is to use Linked Lists.

→ If constructor arguments are needed on the other end; you need a factory sub-class.

• Edge class was modified to fit into linked lists, and can be constructed from a mesh

instance and an input stream.

→ Your task is to make it *Pstreams-ready

P0

P1

Istream&, fvMesh&...

Append, construction uses args on P0

Figure 8: Typical way of sending custom objects through *Pstreams using P2P Comms

Provided by NHR4CES, SDL Energy Conversion Group 12/20



Activity 07: Special parallel comms for custom data types

• All good, but my class can’t have a null constructor!

→ Best solution is to use Linked Lists.

→ If constructor arguments are needed on the other end; you need a factory sub-class.

• Edge class was modified to fit into linked lists, and can be constructed from a mesh

instance and an input stream.

→ Your task is to make it *Pstreams-ready

P0

P1

Istream&, fvMesh&... Append, construction uses args on P0

Figure 8: Typical way of sending custom objects through *Pstreams using P2P Comms

Provided by NHR4CES, SDL Energy Conversion Group 12/20



Final projects



Project 01: Parallelizing a coded source term

→ This project does not work with Foam-Extend as it doesn’t support fvOptions.

1. You inherit a repository with a cavity case which works ”as expected” in serial

2. Run ./Allrun from inside the case’s directory to compare results from serial and

parallel runs.

• This requires ParaView to be installed.

• Use the server version for headless machines if you’re on a container.

• The script writes a log.pvpython file containing max/min absolute error in velocity

values at t = 0.5s between serial and parallel runs of a cavity case.

3. The provided cavity case has a coded fvOptions which adds a source term to the

velocity equation.

• Run ./Allrun with the source active

• Disable the fvOptions source and ./Allclean && ./Allrun again.

• By either setting codedSource.active to false, in system/fvOptions.
• Or by moving fvOptions file elsewhere.

Provided by NHR4CES, SDL Energy Conversion Group 13/20

https://www.paraview.org/download/


Project 01: Parallelizing a coded source term

How does the custom source work?

• We define a box inside our cavity-case mesh to add an explicit vector source to the

UEqn there.

• The x-component of the source at each cell Si = Sv ∗ 1
nNeighbours+1

(
∑nNeighbours

j=1 kj + ki)

depends on:

1. Some ”total” source value Sv provided by the user.

2. An average value of a coefficient field k over the cell and its immediate neighbours which

are inside the volume.

• the target volume is defined through spacial dimensions and the corresponding cells

are found through a Cell Set: box (0.02 0.02 -1) (0.06 0.06 1)

Provided by NHR4CES, SDL Energy Conversion Group 14/20



Project 01: Parallelizing a coded source term

Figure 9: A sample run of the randomized coefficient field k. (The white box is where the source is

applied)

Provided by NHR4CES, SDL Energy Conversion Group 15/20



Project 01: Parallelizing a coded source term

Suggested Steps

1. Identify the problem lines in fvOptions’ code.

Hint: Look for lines which use local mesh information!

2. Implement a fix for the identified issues.

Hint: Can we get information about neighbouring cells that are on the other

processor?

3. How optimized/sophisticated do you think your solution is? Share it

with your peers and take a look at theirs!

Provided by NHR4CES, SDL Energy Conversion Group 16/20



Project 01: Parallelizing a coded source term

To help you identify the issue, take a look at this parameter variation study (varying

source box dimensions, Sv parameter and number of MPI processes involved):

Table 1: Sample trial data for the parameter variation study on the cavity case

Trial Sv xmin xmax ymin ymax nProcs MaxError

0 0.000605 0.02 0.06 0.04 0.09 4 0.24209

1 0.000396 0.04 0.05 0.04 0.06 6 0.09812

2 0.000330 0.01 0.06 0.04 0.07 7 0.20791

3 0.000781 0.01 0.07 0.03 0.06 5 0.31942

Provided by NHR4CES, SDL Energy Conversion Group 17/20



Project 01: Parallelizing a coded source term

Figure 10: k coefficient field for a sample from trial data

Provided by NHR4CES, SDL Energy Conversion Group 18/20



Project 01: Parallelizing a coded source term

Want a quick way to test your fix?

Conduct your own parameter variation studies while you fix the case!

1 # Clone the helper repository
2 git clone https://github.com/FoamScience/OpenFOAM-Multi-Objective-Optimization multiOptFoam
3 cd multiOptFoam
4 # Install dependencies
5 pip3 install -r requirements.txt
6 # Copy your case
7 cp -r ../case .
8 # Grab the config file (provided with the case)
9 cp ../config.yaml .
10 # Run parameter variation
11 ./paramVariation.py
12 # Now change case/system/fvOptions, clean and rerun the variation study
13 rm -rf Example* && ./paramVariation
14 # The goal is to get the maxError column for all trials as close to zero as possible (~ 1e-6)

Provided by NHR4CES, SDL Energy Conversion Group 19/20



Project 02: MPI code profiling for load-balancing

→ This project is supposed to run with the .com version of OpenFOAM.

1. You inherit a repository with some non-blocking parallel communication code to

profile.

• The repository’s structure is similar to the activities.

• Non-blocking sending of different size lists between processors followed by a reduce.

2. Processors suffer from load imbalance but total time is identical across processors!

• As reported by MPI_Wtime calls.

• MPI_Barrier is used right before first MPI_Wtime call to ensure all processors start

profiling at the same time!

• Goal is to reduce the load imbalance (assume the source of imbalance is a run-time

property).

Provided by NHR4CES, SDL Energy Conversion Group 20/20



Project 02: MPI code profiling for load-balancing

Few approches can be considered:

• Link-time replacement of MPI functions with custom functions, wrapping original

functionality in profiling code.

• MPI functions are not virtual.

• We cannot replace their calls through function pointers ... etc.

• So, exploit PMPI interface.

• Take advantage of MPI_T events mechanism.

• Out of scope for this workshop. But interesting to look into.

Provided by NHR4CES, SDL Energy Conversion Group 21/20



Licensing

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

License.

Code snippets are licensed under a GNU Public License.

cba 2023

This offering is not approved or endorsed by OpenCFD Limited, the producer of the

OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.

Provided by NHR4CES, SDL Energy Conversion Group 22/20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.gnu.org/licenses/gpl.txt

	Introductory activities
	Final projects

