N H R NHR for @““%’; TECHNISCHE
Computational 5 %A UNIVERSITAT

Engineering =\ /
DARMSTADT

CES Science
Parallelization in OpenFOAM for HPC Deployment

Hands-on activities

Mohammed Elwardi Fadeli?, Holger Marschall' and Christian Hasse?
April, 2024

" Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

Introductory activities

Activity 01: Blocking P2P comms - A first look

- parallelClass class has a Lst_ member, initiated differently on each process.
- Your task is to append 1st_ from all slave processes (1,2 and 3) into a single list
object on master.
Using blocking P2P communication between master and a slave each time.
Append the lists in the order of process IDs.
Modify exercises/parallelClass.C file.

P, sends 1st_

IPstream 'OPstreamT
‘ L

P, sends lst_ Po combines all st _ lists

IPstream P; sends 1st_

S | }OPstream
IPstream T ‘

T OPstream

4

Figure 1: Blocking P2P with master

Provided by NHR4CES, SDL Energy Conversion Group 1/20

Activity 02: Collective comms - A first look

- parallelClass::isPrime(int) is a primitive method to check if its argument is
a prime number.

But it's serial code! Running it in parallel will duplicate work on all processes
Parallelizing it should yield performance gains
1. Domain Decomposition

This is done already if your data is mesh-related (mesh itself, fields, ... etc)
We need to "decompose” the search range [3, sqrt(n)+1] into nProcs ranges.

parallelClass::next(int n, int& i) increments i to the next number in
process-controlled range

(3]4]5]6]7]8]9 FEIENEPAEENL

Figure 2: Provided trivial decomposition of the range [3,v/n + 1]

Provided by NHR4CES, SDL Energy Conversion Group

Activity 02: Collective comms - A first look

2. Blocking P2P comms:

Transform parallelClass: :isPrime(int) so that it acts on the corresponding
range on each of the 4 processes.

All processes must decide if it's a prime number, based on results from all other process.
Think: collective comms. Although P2P comms also would work!

3. An alternate decomposition:

Each process is responsible for possible divisors that are nProcs apart.
Implement this behavior in parallelClass: :next(int n, int& i)

6]/ [8

Figure 3: A new example decomposition of the range [3,+/n + 1]

Provided by NHR4CES, SDL Energy Conversion Group

Activity 02: Collective comms - A first look

Is there room for improvement?

4. Decomposition effect

Different decompositions result in different loads on processes

In blocking comms, balanced decompositions are the most efficient

But keep in mind; if it takes too much time to decompose "dynamically” - it might backfire!
5. Optimizing the code

A process can break out of loop and return if it finds a viable divisor.

But can’t stop calculations on all other processes.

Hence, apparently, not worth the trouble.

But, if all other processes also return early, we can gain some CPU time.

Maybe test only on prime numbers less than /n + 1?

The whole parallelization idea was premature optimization, huh!

Provided by NHR4CES, SDL Energy Conversion Group

Activity 03: Blocking P2P comms are not good for your health

- Code in parallelClass: :run() tries to perform 2 blocking P2P communication
operations between two processes.
When they hang; processes are killed by timeout.
- Your task is to modify the run member method so the code no longer hangs.
Pay attention to the order of the send/receive ops!
The Actual sending happens on *Pstream objects’ destruction
Do you think your solution would withstand MPI implementation swapping? (OpenMPI,
Intel MPI, MPICH ... etc)

l IPstream Q OPstream 'L

T OPstream " IPstream T

Figure 4: 2 Blocking P2P communication operations at the same time
Provided by NHR4CES, SDL Energy Conversion Group

Activity 04: Non-Blocking P2P comms for swapping ops

- Each process communicates a list object to its neighbour
Neighbouring relationships are based on mesh decomposition
parallelClass class has nProcs lists as a member variable 1ists_ (Each list is to be
transferred to the process’'s neighbour)
- Your task is to perform an exchange of the lists so that, at the end of all transfers;
each process holds the lists from its neighbors (instead of its own ones).
This should be done in parallelClass: :swapLists() method
Again in execises/parallelClass.C file

Provided by NHR4CES, SDL Energy Conversion Group

Activity 04: Non-Blocking P2P comms for swapping ops

lists_[2]

Figure 5: Default (hierarchical) decomposition of the block-mesh in the cavity case

Provided by NHR4CES, SDL Energy Conversion Group

Activity 04: Non-Blocking P2P comms for swapping ops

lists_[2]

Figure 5: Default (hierarchical) decomposition of the block-mesh in the cavity case

Provided by NHR4CES, SDL Energy Conversion Group

Activity 04: Non-Blocking P2P comms for swapping ops

OPstream IPstream I
.

Figure 5: Default (hierarchical) decomposition of the block-mesh in the cavity case

Provided by NHR4CES, SDL Energy Conversion Group

Activity 05: Collective comms - Reference cell

- It's popular to assign a reference cell if all BCs are gradient-based for a field:

Common pressure reference point in system/fvSolution

PISO

{
pRefPoint (0.0975 0.0025 0); // At far right-bottom cell of the cavity mesh
pRefvalue 0;

}

Note that pRefCell is enough for most cases. Information propagated automatically
through processor patches!
- mesh.findCell(position); returns:
-1 if the position is outside the local mesh (on calling process).
cellID of the cell containing the position otherwise.

1. Your first task is to check if the provided position is inside the global mesh
Using collective comms; Think: Foam: : reduce
Change parallelClass::checkPosition(const vector§) soitreturns true if
given position is inside the mesh.

Provided by NHR4CES, SDL Energy Conversion Group

Activity 05: Collective comms - Reference cell

2. It's useful for everyone to know which process has the corresponding reference cell
Change parallelClass: :whoHasReferenceCell(const vector§) so it returns
-1 if position is outside the mesh; and returns the rank of the process which is
responsible for the reference cell otherwise.
Again, using collective comms.

P,, | have the cell!

Pg, cell not found here

Figure 6: Suggested setup for reference cell communication

Provided by NHR4CES, SDL Energy Conversion Group

Activity 05: Collective comms - Reference cell

2. It's useful for everyone to know which process has the corresponding reference cell
Change parallelClass: :whoHasReferenceCell(const vector§) so it returns
-1 if position is outside the mesh; and returns the rank of the process which is
responsible for the reference cell otherwise.
Again, using collective comms.

P,, | have the cell!

Gather here

Po, OK, P, has the cell

w

Figure 6: Suggested setup for reference cell communication

Provided by NHR4CES, SDL Energy Conversion Group

Activity 05: Collective comms - Reference cell

2. It's useful for everyone to know which process has the corresponding reference cell
Change parallelClass: :whoHasReferenceCell(const vector§) so it returns
-1 if position is outside the mesh; and returns the rank of the process which is
responsible for the reference cell otherwise.
Again, using collective comms.

P,, | have the cell!

Scatter to all

Pg, OK, P, has the cell P;, OK, P, has the cell

»
@

w

Figure 6: Suggested setup for reference cell communication

Provided by NHR4CES, SDL Energy Conversion Group

Activity 06: Parallel comms for custom data types

- So, | wrote a class; now | want its objects to travel through processors.
parallelClass.H file declares an Edge class, to represent "neighbouring relationship”
between two processors.

The goal is to build a graph of such edges.

1. Your first task is to make this Edge class compatible with random-access lists. l.e an
Edge object can be putin a list.
Try ./Alltest and take a look at compilation log.
Modify Edge class declaration/definition so that errors related to its compatibility with
List template disappear.

Provided by NHR4CES, SDL Energy Conversion Group 10/20

Activity 06: Parallel comms for custom data types

2. Implement operator<< and operator>> so that an Edge object can be
passed-to/read-from Output/Input streams.

Things should at least compile.

Compatibility of Edge with List is tested by the compiler.

There is also a check for correct graph communications when the graph is gathered then
scattered.

PO @ null null null P1

Figure 7: Typical way of sending custom objects through *Pstreams using Collective Comms

Provided by NHR4CES, SDL Energy Conversion Group

Activity 07: Special parallel comms for custom data types

- All good, but my class can't have a null constructor!
Best solution is to use Linked Lists.
If constructor arguments are needed on the other end; you need a factory sub-class.
- Edge class was modified to fit into linked lists, and can be constructed from a mesh
instance and an input stream.
Your task is to make it *Pstreams-ready

Istream§, fvMeshé..

Figure 8: Typical way of sending custom objects through *Pstreams using P2P Comms

Provided by NHR4CES, SDL Energy Conversion Group

Activity 07: Special parallel comms for custom data types

- All good, but my class can't have a null constructor!
Best solution is to use Linked Lists.
If constructor arguments are needed on the other end; you need a factory sub-class.
- Edge class was modified to fit into linked lists, and can be constructed from a mesh
instance and an input stream.
Your task is to make it *Pstreams-ready

Istreams, fuMeshs.. Append, construction uses args on Py

. P;
7 { Yoooonaoos i
PO ‘ :

Figure 8: Typical way of sending custom objects through *Pstreams using P2P Comms

Provided by NHR4CES, SDL Energy Conversion Group

Final projects

Project 01: Parallelizing a coded source term

1. You inherit a repository with a cavity case which works "as expected” in serial
2. Run ./Allrun from inside the case’s directory to compare results from serial and
parallel runs.
- This requires ParaView to be installed.
- Use the server version for headless machines if you're on a container.
- The script writes a Log. pvpython file containing max/min absolute error in velocity
values at t = 0.5s between serial and parallel runs of a cavity case.
3. The provided cavity case has a coded fvOptions which adds a source term to the
velocity equation.

- Run ./Allrun with the source active

- Disable the fvOptions source and ./Allclean && ./Allrun again.
- By either setting codedSource.active to false, in system/fvOptions.
- Or by moving fvOptions file elsewhere.

Provided by NHR4CES, SDL Energy Conversion Group

https://www.paraview.org/download/

Project 01: Parallelizing a coded source term

How does the custom source work?

- We define a box inside our cavity-case mesh to add an explicit vector source to the
UEqn there.
- The x-component of the source at each cell S; = S, * m(z}l"f'ghbom ki + ki)
depends on:
1. Some "total” source value S, provided by the user.
2. An average value of a coefficient field k over the cell and its immediate neighbours which
are inside the volume.
- the target volume is defined through spacial dimensions and the corresponding cells
are found through a Cell Set: box (0.02 0.02 -1) (0.06 0.06 1)

Provided by NHR4CES, SDL Energy Conversion Group 14/20

Project 01: Parallelizing a coded source term

Figure 9: A sample run of the randomized coefficient field k. (The white box is where the source is
applied)

Provided by NHR4CES, SDL Energy Conversion Group

Project 01: Parallelizing a coded source term

Suggested Steps
1. Identify the problem lines in fvOptions’ code.
Hint: Look for lines which use local mesh information!
2. Implement a fix for the identified issues.

Hint: Can we get information about neighbouring cells that are on the other
processor?

3. How optimized/sophisticated do you think your solution is? Share it
with your peers and take a look at theirs!

Provided by NHR4CES, SDL Energy Conversion Group 16/20

Project 01: Parallelizing a coded source term

To help you identify the issue, take a look at this parameter variation study (varying
source box dimensions, S, parameter and number of MPI processes involved):

Table 1: Sample trial data for the parameter variation study on the cavity case

Trial Sy Xmin Xmax Ymin Ymax NProcs | MaxError

0 0.000605 0.02 0.06 0.04 0.09 4 0.24209
1 0.000396 0.04 0.05 0.04 0.06 6 0.09812
2 0.000330 0.01 0.06 0.04 0.07 7 0.20791
3 0.000781 0.01 0.07 0.03 0.06 5 0.31942

Provided by NHR4CES, SDL Energy Conversion Group

Project 01: Parallelizing a coded source term

S58 &

;t T T

7 *F i B8 some |
I I

T T s T T T i +i:ﬁ T
T ITTT T T T
T

T T T T
o ImEE I
I

Project 01: Parallelizing a coded source term

O O~N Ul WN R

B R R R R
W N RO

Provided by N

Want a quick way to test your fix?

ile you fix the case!

Clone the helper repository

git clone https://github.com/FoamScience/OpenFOAM-Multi-Objective-Optimization multiOptFoam
cd multiOptFoam

Install dependencies

pip3 install -r requirements.txt

Copy your case

cp -r ../case .

Grab the config file (provided with the case)

cp ../config.yaml .

Run parameter variation

./paramVariation.py

Now change case/system/fvOptions, clean and rerun the variation study

rm -rf Example* &§& ./paramVariation

The goal is to get the maxError column for all trials as close to zero as possible (~ le-6)

\HR4CES, SDL Energy Conversion Group

Project 02: MPI code profiling for load-balancing

1. You inherit a repository with some non-blocking parallel communication code to
profile.
- The repository’s structure is similar to the activities.
- Non-blocking sending of different size lists between processors followed by a reduce.
2. Processors suffer from load imbalance but total time is identical across processors!
- As reported by MPI_Wtime calls.

- MPI_Barrier is used right before first MPI_Wtime call to ensure all processors start
profiling at the same time!

- Goal is to reduce the load imbalance (assume the source of imbalance is a run-time
property).

Provided by NHR4CES, SDL Energy Conversion Group

Project 02: MPI code profiling for load-balancing

Few approches can be considered:

- Link-time replacement of MPI functions with custom functions, wrapping original
functionality in profiling code.

- MPI functions are not virtual.
- We cannot replace their calls through function pointers ... etc.
-+ So, exploit PMPI interface.

- Take advantage of MPI_T events mechanism.
- Out of scope for this workshop. But interesting to look into.

Provided by NHR4CES, SDL Energy Conversion Group 21/20

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

Code snippets are licensed under a GNU Public License.

e®O -

This offering is not approved or endorsed by OpenCFD Limited, the producer of the
OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.

Provided by NHR4CES, SDL Energy Conversion Group

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.gnu.org/licenses/gpl.txt

	Introductory activities
	Final projects

