
Parallelization in OpenFOAM for HPC Deployment

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

Motivation

• Solving some problems requires more computing power than what typical machines
provide.

• Solution→ Different ways of parallel optimization

• Single core: SIMD

• ax2 + bx → x(ax + b)
• 3 multiplications→ 2 multiplications

•
(
x0
x1

)
◦
(
ax0 + b
ax1 + b

)
→ can be computed concurrently.

• Multi-core (multi-threading): OpenMP, std::thread, library based, ..., etc
• Machine clusters: MPI← our workshop’s scope
• Custom accelerator hardware (GPUs, FPGAs, ..., etc)

Provided by NHR4CES, SDL Energy Conversion Group 1/50

Motivation

• Solving some problems requires more computing power than what typical machines
provide.

• Solution→ Different ways of parallel optimization
• Single core: SIMD

• ax2 + bx → x(ax + b)
• 3 multiplications→ 2 multiplications

•
(
x0
x1

)
◦
(
ax0 + b
ax1 + b

)
→ can be computed concurrently.

• Multi-core (multi-threading): OpenMP, std::thread, library based, ..., etc
• Machine clusters: MPI← our workshop’s scope
• Custom accelerator hardware (GPUs, FPGAs, ..., etc)

Provided by NHR4CES, SDL Energy Conversion Group 1/50

Motivation

• Solving some problems requires more computing power than what typical machines
provide.

• Solution→ Different ways of parallel optimization
• Single core: SIMD

• ax2 + bx → x(ax + b)

• 3 multiplications→ 2 multiplications

•
(
x0
x1

)
◦
(
ax0 + b
ax1 + b

)
→ can be computed concurrently.

• Multi-core (multi-threading): OpenMP, std::thread, library based, ..., etc
• Machine clusters: MPI← our workshop’s scope
• Custom accelerator hardware (GPUs, FPGAs, ..., etc)

Provided by NHR4CES, SDL Energy Conversion Group 1/50

Motivation

• Solving some problems requires more computing power than what typical machines
provide.

• Solution→ Different ways of parallel optimization
• Single core: SIMD

• ax2 + bx → x(ax + b)
• 3 multiplications→ 2 multiplications

•
(
x0
x1

)
◦
(
ax0 + b
ax1 + b

)
→ can be computed concurrently.

• Multi-core (multi-threading): OpenMP, std::thread, library based, ..., etc
• Machine clusters: MPI← our workshop’s scope
• Custom accelerator hardware (GPUs, FPGAs, ..., etc)

Provided by NHR4CES, SDL Energy Conversion Group 1/50

Motivation

• Solving some problems requires more computing power than what typical machines
provide.

• Solution→ Different ways of parallel optimization
• Single core: SIMD

• ax2 + bx → x(ax + b)
• 3 multiplications→ 2 multiplications

•
(
x0
x1

)
◦
(
ax0 + b
ax1 + b

)
→ can be computed concurrently.

• Multi-core (multi-threading): OpenMP, std::thread, library based, ..., etc
• Machine clusters: MPI← our workshop’s scope
• Custom accelerator hardware (GPUs, FPGAs, ..., etc)

Provided by NHR4CES, SDL Energy Conversion Group 1/50

Motivation

• Solving some problems requires more computing power than what typical machines
provide.

• Solution→ Different ways of parallel optimization
• Single core: SIMD

• ax2 + bx → x(ax + b)
• 3 multiplications→ 2 multiplications

•
(
x0
x1

)
◦
(
ax0 + b
ax1 + b

)
→ can be computed concurrently.

• Multi-core (multi-threading): OpenMP, std::thread, library based, ..., etc

• Machine clusters: MPI← our workshop’s scope
• Custom accelerator hardware (GPUs, FPGAs, ..., etc)

Provided by NHR4CES, SDL Energy Conversion Group 1/50

Motivation

• Solving some problems requires more computing power than what typical machines
provide.

• Solution→ Different ways of parallel optimization
• Single core: SIMD

• ax2 + bx → x(ax + b)
• 3 multiplications→ 2 multiplications

•
(
x0
x1

)
◦
(
ax0 + b
ax1 + b

)
→ can be computed concurrently.

• Multi-core (multi-threading): OpenMP, std::thread, library based, ..., etc
• Machine clusters: MPI← our workshop’s scope

• Custom accelerator hardware (GPUs, FPGAs, ..., etc)

Provided by NHR4CES, SDL Energy Conversion Group 1/50

Motivation

• Solving some problems requires more computing power than what typical machines
provide.

• Solution→ Different ways of parallel optimization
• Single core: SIMD

• ax2 + bx → x(ax + b)
• 3 multiplications→ 2 multiplications

•
(
x0
x1

)
◦
(
ax0 + b
ax1 + b

)
→ can be computed concurrently.

• Multi-core (multi-threading): OpenMP, std::thread, library based, ..., etc
• Machine clusters: MPI← our workshop’s scope
• Custom accelerator hardware (GPUs, FPGAs, ..., etc)

Provided by NHR4CES, SDL Energy Conversion Group 1/50

NHR4CES - Simulation and Data Labs - SDL Energy Conversion

PhD Student PI PI

And more team members here - working on

Computationally efficient HPC-ready, (reactive)CFD software and methods.

Provided by NHR4CES, SDL Energy Conversion Group 2/50

https://www.nhr4ces.de/simulation-and-data-labs/sdl-energy-conversion/

Parallelization in OpenFOAM for HPC Deployment
Agenda

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

Lecture section: Agenda

Worksop Activities

April, 3rd 2023 Presentation / Questions
————— ———–
April, 13th 2023, 10 AM CET Hands-on sessions

Go through the lecture
videos at your own pace

Ask about unclear
concepts throughout the
next 10 days

Prepare for hands-on
sessions

See how it’s done
Apply what you see to
parallelize code
Fight bugs, on your
favourite OF fork

Provided by NHR4CES, SDL Energy Conversion Group 3/50

Lecture section: Table of contents

1. General Introduction
2. Point-to-point communication
3. Collective communication
4. How do I send my own Data?
5. Advanced applications and topics

Provided by NHR4CES, SDL Energy Conversion Group 4/50

Parallelization in OpenFOAM for HPC Deployment
General Introduction

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

The power of parallel workers

Figure 1: Parallel work during F1 Pit stops; CC BY 2.0, from commons.wikimedia.org

Provided by NHR4CES, SDL Energy Conversion Group 5/50

Types of Parallelism

Data Parallelism
Work units execute the same operations on a (distributed) set of data:
domain decomposition.

Task Parallelism
Work units execute on different control paths, possibly on different data
sets: multi-threading.

Pipeline Parallelism
Work gets split between producer and consumer units that are directly
connected. Each unit executes a single phase of a given task and hands
over control to the next one.

Provided by NHR4CES, SDL Energy Conversion Group 6/50

Types of Parallelism

Data Parallelism
Work units execute the same operations on a (distributed) set of data:
domain decomposition.

Task Parallelism
Work units execute on different control paths, possibly on different data
sets: multi-threading.

Pipeline Parallelism
Work gets split between producer and consumer units that are directly
connected. Each unit executes a single phase of a given task and hands
over control to the next one.

Provided by NHR4CES, SDL Energy Conversion Group 6/50

Domain decomposition in OpenFOAM

simple
Simple geometric decomposition, in which the domain is split into pieces
by direction

hierarchical
Same as simple, but the order in which the directional split is done can be
specified

metis & scotch
Require no geometric input from the user and attempts to minimize the
number of processor boundaries. Weighting for the decomposition
between processors can be specified

manual
Allocation of each cell to a particular processor is specified directly.

Provided by NHR4CES, SDL Energy Conversion Group 7/50

Domain decomposition in OpenFOAM: Processor boundaries

Ω0

Ω1

Ω2

Ω2

Γ10
Γ01

adjoint: φ0+=φ1

φ1 = 0

0 sends φ, φ1 = φ0

Figure 2: Classical halo approach for inter-processor communication

• Use of a layer of ghost cells to handle comms with neighboring processes→ MPI
calls not self-adjoint

• Artificial increase in number of computations per process (and does not scale well)
Provided by NHR4CES, SDL Energy Conversion Group 8/50

Domain decomposition in OpenFOAM: Processor boundaries

Ω0

Ω1

Ω2

Ω2

Γ0,1

cyclic + comms

Figure 3: Zero-halo approach for inter-processor communication in OpenFOAM

• Communications across process boundaries handled as a BC
• MPI calls are self-adjoint; all processes perform the same work at the boundaries

Provided by NHR4CES, SDL Energy Conversion Group 9/50

Domain decomposition in OpenFOAM: Processor boundaries

Communicate efficiently through
processor boundaries

1 // Swap boundary face lists through
2 // processor boundary faces
3 // This code runs on all processors
4 syncTools::swapBoundaryFaceList(mesh(), faceField);
5 // Now faceField has values from the other side
6 // of the processor boundary

Γ0,1

Figure 4: Swapping boundary fields across processor boundaries

• Standard API for common processor boundary fields operations
→ Generalized for coupled patches, little to no micro management!

• Same local operations carried out on both processors (No checking for processor
ranks ... etc)

Provided by NHR4CES, SDL Energy Conversion Group 10/50

Modes of Parallelism

Distributed Memory
Message Passing Interface (MPI): Execute on multiple machines.

Shared Memory
Multi-threading capabilities of programming languages, OpenMP:
One machine, many CPU cores.

Data Streaming
CUDA and OpenCL. Applications are organized into streams (of same-type
elements) and kernels (which act on elements of streams) which is suitable
for accelerator hardware (GPUs, FPGAs, ..., etc).

Provided by NHR4CES, SDL Energy Conversion Group 11/50

MPI with OpenFOAM

Does ’echo’ work work with MPI?
1 mpirun -n 3 echo Hello World!

Hello World!
Hello World!
Hello World!

What about a solver binary?
1 mpirun -n 3 icoFoam

This runs on ”undecomposed”
cases!

But the solver is linked to libmpi!

1 ldd $(which icoFoam)
... libmpi.so ...

Alright we get it now
1 mpirun -n 3 icoFoam -parallel

Needs a decomposed case

Provided by NHR4CES, SDL Energy Conversion Group 12/50

MPI with OpenFOAM

Does ’echo’ work work with MPI?
1 mpirun -n 3 echo Hello World!

Hello World!
Hello World!
Hello World!

What about a solver binary?
1 mpirun -n 3 icoFoam

This runs on ”undecomposed”
cases!

But the solver is linked to libmpi!

1 ldd $(which icoFoam)
... libmpi.so ...

Alright we get it now
1 mpirun -n 3 icoFoam -parallel

Needs a decomposed case

Provided by NHR4CES, SDL Energy Conversion Group 12/50

MPI with OpenFOAM

Does ’echo’ work work with MPI?
1 mpirun -n 3 echo Hello World!

Hello World!
Hello World!
Hello World!

What about a solver binary?
1 mpirun -n 3 icoFoam

This runs on ”undecomposed”
cases!

But the solver is linked to libmpi!

1 ldd $(which icoFoam)
... libmpi.so ...

Alright we get it now
1 mpirun -n 3 icoFoam -parallel

Needs a decomposed case

Provided by NHR4CES, SDL Energy Conversion Group 12/50

MPI with OpenFOAM: Parallel mode

Anatomy of MPI programs
1 #include <mpi.h>
2 void main (int argc, char *argv[])
3 {
4 int np, rank, err;

5 err = MPI_Init(&argc, &argv) ;

6 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
7 MPI_Comm_size(MPI_COMM_WORLD,&np);
8 // Do parallel communications

9 err = MPI_Finalize() ;

10 }

How solver programs look
1 #include "fvCFD.H"
2 void main (int argc, char *argv[])
3 {
4 #include "setRootCase.H"
5 // Defines an argList object,
6 // which has a ParRunControl member
7 // If -parallel is passed in:
8 // MPI_Init called in its ctor
9 // MPI_Finalize called in its dtor

10
11 // Time is constructed with
12 // <case>/processor<procID> paths
13 }

You don’t have to know MPI API to parallelise OpenFOAM code! But you need the
concepts.

Provided by NHR4CES, SDL Energy Conversion Group 13/50

MPI with OpenFOAM: Parallel mode

Anatomy of MPI programs
1 #include <mpi.h>
2 void main (int argc, char *argv[])
3 {
4 int np, rank, err;

5 err = MPI_Init(&argc, &argv) ;

6 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
7 MPI_Comm_size(MPI_COMM_WORLD,&np);
8 // Do parallel communications

9 err = MPI_Finalize() ;

10 }

How solver programs look
1 #include "fvCFD.H"
2 void main (int argc, char *argv[])
3 {
4 #include "setRootCase.H"
5 // Defines an argList object,
6 // which has a ParRunControl member
7 // If -parallel is passed in:
8 // MPI_Init called in its ctor
9 // MPI_Finalize called in its dtor

10
11 // Time is constructed with
12 // <case>/processor<procID> paths
13 }

You don’t have to know MPI API to parallelise OpenFOAM code! But you need the
concepts.

Provided by NHR4CES, SDL Energy Conversion Group 13/50

Objectives

1. Have a basic understanding of Parallel programming with MPI in OpenFOAM Code.
2. Be able to send basic custom object types around using MPI.
3. Be aware of some of the common issues around MPI comms.
4. Acquire enough knowledge to learn more on your own

• Directly from OpenFOAM’s code
• MPI in general

By the end of the Workshop

→ Be able to parallelize basic serial OpenFOAM code.

Provided by NHR4CES, SDL Energy Conversion Group 14/50

Communication types in MPI

Point-to-Point Comms

Used in OpenFOAM

Collective Comms

Used in OpenFOAM

One-Sided Comms

not used

Parallel IO

not used

We’ll be focusing on the communications OpenFOAM wraps!

Provided by NHR4CES, SDL Energy Conversion Group 15/50

Parallelization in OpenFOAM for HPC Deployment
Point-to-Point Communications / General Introduction

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

Communicators and ranks

There may be many processes talking!

MPI Communicators
Objects defining which processes can communicate; Processes are referred
to by their ranks
• MPI_COMM_FOAM in the Foundation version and Foam Extend 5
• MPI_COMM_WORLD (All processes) elsewhere
• Size: Pstream::nProcs()

MPI rank
Process Identifier (an integer).
• Pstream::myProcNo() returns the active process’s ID.

Provided by NHR4CES, SDL Energy Conversion Group 16/50

Serialization and De-serialization: Basics

Premise: resurrect objects from streams of (binary or readable-text) data.

Standard C++ way
Manually Override operator<< and operator>> to interact with stream
objects.
• This is used extensively in OpenFOAM
• Newer languages provide automatic serialization at language-level

Third-party libs
Try to handle automatic serialization
• Boost’s serialization library if you’re into Boost
• cereal as header-only library

Provided by NHR4CES, SDL Energy Conversion Group 17/50

Serialization for MPI comms

• MPI defines its own Data Types so it can be ”cross-platform”
• OpenFOAM gets around it using parallel streams as means of serialization

• OpenFOAM hands over a stream-representation of your data to MPI calls
• MPI passes the information in those streams around

P0 P1

OPstream IPstream

M
PI
bu
f

send

M
PIbuf

recv

Figure 5: Communication between two processes in OpenFOAM

Provided by NHR4CES, SDL Energy Conversion Group 18/50

P2P comms: A first example

Figure 1: Parallel work during F1 Pit stops; CC BY 2.0, from commons.wikimedia.org

Provided by NHR4CES, SDL Energy Conversion Group 19/50

P2P comms: A first example

• Pstream class provides the interface needed for communication
• Each ”send” must be matched with a ”receive”

Slaves talk to master in a P2P fashion
1 if (Pstream::master())
2 {
3 // Receive lst on master
4 for
5 (
6 int slave=Pstream::firstSlave();
7 slave<=Pstream::lastSlave();
8 slave++
9)

10 {
11 labelList lst;

12 IPstream fromSlave (Pstream::commsTypes::blocking, slave);
13 fromSlave >> lst; // Then do something with lst
14 }
15 } else {
16 // Send lst to master
17 OPstream toMaster (Pstream::commsTypes::blocking, Pstream::masterNo());
18 toMaster << localLst;
19 }

Provided by NHR4CES, SDL Energy Conversion Group 20/50

Parallelization in OpenFOAM for HPC Deployment
Point-to-Point Communications / Blocking comms

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

P2P comms: A first example

Figure 1: Parallel work during F1 Pit stops; CC BY 2.0, from commons.wikimedia.org

Provided by NHR4CES, SDL Energy Conversion Group 21/50

P2P Blocking comms

Pstream::commsTypes::blocking (or just Pstream::blocking in Foam Extend)
defines properties for the MPI call which is executed by the constructed stream.

Sending is an asynchronous buffered blocking send
• Block until a copy of the passed buffer is made.
• MPI will send it at a later point, we just can’t know when.
• All we know is that the buffer is ready to be used after it returns.

Receiving is a blocking receive
• Block until incoming message is copied into passed buffer.

Provided by NHR4CES, SDL Energy Conversion Group 22/50

P2P Blocking comms

Pstream::commsTypes::scheduled (or just Pstream::scheduled in Foam
Extend) lets MPI pick the best course of action (in terms of performance and memory).
This may also depend on the MPI implementation.

• Does a ”standard send”, Either:
1. Do a buffered send (like blocking) if the buffer has enough free space to accommodate
sent data.

2. Fall back to a synchronous send otherwise.

• Both blocking and scheduled comms have a chance of causing deadlocks

A Deadlock happens when a process is waiting for a message that never reaches it.

Provided by NHR4CES, SDL Energy Conversion Group 23/50

P2P Blocking comms: Deadlocks

• Either a matching send or a recieve is missing (Definitely a deadlock).
• A send-recieve cycle (Incorrect usage or order of send/recieve calls).

P0 P1

M
PI
bu
f1

recv

M
PI
bu
f2

send

M
PIbuf1

send

M
PIbuf2

recv

Figure 6: Deadlock possibility due to a 2-processes send-recieve cycle (Kind of depends on MPI
implementation used!).

Provided by NHR4CES, SDL Energy Conversion Group 24/50

P2P Blocking comms: Stats

blocking
381

scheduled
138

nonBlocking
104

blocking
175

scheduled
186

nonBlocking
165

blocking
117

scheduled
139

nonBlocking
164

Figure 7: Frequency of usage for each type of OpenFOAM comms in OpenFOAM 10 (left), OpenFOAM
v2012 (middle) and Foam-Extend 5 (right)

DISCLAIMER: Data generated pre-maturely; not suitable to compare forks irt. parallel
performance -> Better compare history of the same fork instead.

1 grep -roh -e '::nonBlocking' -e '::blocking' -e '::scheduled' $FOAM_SRC | sort | uniq -c

Provided by NHR4CES, SDL Energy Conversion Group 25/50

Parallelization in OpenFOAM for HPC Deployment
Point-to-Point Communications / Non-Blocking comms

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

P2P Non-Blocking comms

Pstream::commsTypes::nonBlocking (or just Pstream::nonBlocking in Foam
Extend) does not wait until buffers are safe to re-use.

• Returns immediately (similar to ”async” in multi-threading context).
• The program must wait for the operation to complete (Pstream::waitRequests).
• It’s a form of piepline parallelism; i.e. Overlaps computation and communication.

• Avoids Deadlocks
• Minimizes idle time for MPI processes
• Helps skip unnecessary synchronisation

Provided by NHR4CES, SDL Energy Conversion Group 26/50

P2P Non-Blocking comms: An example

Communicate with a neighboring processor
1 // Code for the Foundation version and ESI
2 PstreamBuffers pBufs (Pstream::commsTypes::nonBlocking);
3 // Send
4 forAll(procPatches, patchi)
5 {
6 UOPstream toNeighb(procPatches[patchi].neighbProcNo(), pBufs);
7 toNeighb << patchInfo;
8 }
9 pBufs.finishedSends(); // <- Calls Pstream::waitRequests
10 // Receive
11 forAll(procPatches, patchi)
12 {
13 UIPstream fromNb(procPatches[patchi].neighbProcNo(), pBufs);
14 Map<T> nbrPatchInfo(fromNb);
15 }

Provided by NHR4CES, SDL Energy Conversion Group 27/50

Overlapping communication and computation

0.290

0.144

0.074
0.037

0.164
0.082 0.040 0.022

Computation time blocking nonBlocking

64 32 16 8

0.000

0.200

0.400

0.600

0.800

0.657

0.264

0.135
0.0730.167

0.084 0.042 0.021

Message size in Mb

To
ta
le
xe
cu
tio
n
tim

e
(in

se
cs
)

Figure 8: Effect of message size on overlapping communication and computation (4 processors,
OpenMPI 4, OpenFOAM 8); Benchmark inspired from [2]

Provided by NHR4CES, SDL Energy Conversion Group 28/50

MPI send modes used in OpenFOAM code

Standard Send

Default in scheduled

MPI_Send

Will not return until send buffer is safe to use, May also buffer.

Buffered Send

Default in blocking

MPI_Bsend

Returns after copying the buffer and it can be used again

Non-Blocking standard Send

Default in nonBlocking

MPI_Isend

Synchronous Send

not used

MPI_Ssend

Ready Send

not used

MPI_Rsend

Provided by NHR4CES, SDL Energy Conversion Group 29/50

MPI send modes used in OpenFOAM code

Standard Send

Default in scheduled

MPI_Send

Will not return until send buffer is safe to use, May also buffer.

Buffered Send

Default in blocking

MPI_Bsend

Returns after copying the buffer and it can be used again

Non-Blocking standard Send

Default in nonBlocking

MPI_Isend

Synchronous Send

not used

MPI_Ssend

Ready Send

not used

MPI_Rsend

Provided by NHR4CES, SDL Energy Conversion Group 29/50

MPI send modes used in OpenFOAM code

Standard Send

Default in scheduled

MPI_Send

Will not return until send buffer is safe to use, May also buffer.

Buffered Send

Default in blocking

MPI_Bsend

Returns after copying the buffer and it can be used again

Non-Blocking standard Send

Default in nonBlocking

MPI_Isend

Synchronous Send

not used

MPI_Ssend

Ready Send

not used

MPI_Rsend

Provided by NHR4CES, SDL Energy Conversion Group 29/50

MPI send modes used in OpenFOAM code

Standard Send

Default in scheduled

MPI_Send

Will not return until send buffer is safe to use, May also buffer.

Buffered Send

Default in blocking

MPI_Bsend

Returns after copying the buffer and it can be used again

Non-Blocking standard Send

Default in nonBlocking

MPI_Isend

Synchronous Send

not used

MPI_Ssend

Ready Send

not used

MPI_Rsend

Provided by NHR4CES, SDL Energy Conversion Group 29/50

Parallelization in OpenFOAM for HPC Deployment
Collective Communications / General Introduction

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

Collective comms

When Two or more processes talk to each other.

• All processes call the same function with the same set of arguments.
• Although MPI-2 has non-blocking collective communications, OpenFOAM uses only
the blocking variants.

• NOT a simple wrapper around P2P comms.
• Most collective algorithms are log(nProcs)

Provided by NHR4CES, SDL Energy Conversion Group 30/50

Collective comms

• OpenFOAM puts their interface in static public methods of Pstream class.
• Major differences in the API across forks: (ESI and Foundation version) vs Foam Extend.

• Gather (all-to-one), Scatter (one-to-all), All-to-All variants of all-to-one ones.
• What OpenFOAM calls a ”reduce” is Gather+Scatter. This significantly differs from
MPI’s concept of a reduce which is an all-to-one operation.

• MPI has also a ”Broadcast” and ”Barrier” but these are not used in OpenFOAM.

Provided by NHR4CES, SDL Energy Conversion Group 31/50

Parallelization in OpenFOAM for HPC Deployment
Collective Communications / Common API

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

Collective comms: Gather (All-to-one)

Check how something is distributed over processors
1 bool v = false;
2 if (Pstream::master()){ v = something(); } // <- must do on master
3 Pstream::gather(v, orOp<bool>()); // <- root process gathers

P0

v0v0

P1

v0||v1||v2

P2

v0||v1||v2v2

orOp() orOp()

or
Op

()

v1

Figure 9: An example OpenFOAM gather operation (More like a MPI-reduce)
Provided by NHR4CES, SDL Energy Conversion Group 32/50

Collective comms: Gather (All-to-one)

Check how something is distributed over processors
1 bool v = false;
2 if (Pstream::master()){ v = something(); } // <- must do on master
3 Pstream::gather(v, orOp<bool>()); // <- root process gathers

P0

v0v0

P1

v0||v1||v2

P2

v0||v1||v2v2

orOp() orOp()
or

Op
()

v0||v1||v2

Figure 9: An example OpenFOAM gather operation (More like a MPI-reduce)
Provided by NHR4CES, SDL Energy Conversion Group 32/50

Collective comms: Gather (All-to-one)

Check how something is distributed over processors (List-like)
1 List<bool> localLst(Pstream::nProcs(), false);
2 localLst[Pstream::myProcNo()] = something();
3 Pstream::gatherList(localLst); // <- root process gathers

P0

v0

P1

v1

P2

v2

v0 v0 v0v0

v0v0

v2v0

Figure 10: Example OpenFOAM gather operation on list items
Provided by NHR4CES, SDL Energy Conversion Group 33/50

Collective comms: Gather (All-to-one)

Check how something is distributed over processors (List-like)
1 List<bool> localLst(Pstream::nProcs(), false);
2 localLst[Pstream::myProcNo()] = something();
3 Pstream::gatherList(localLst); // <- root process gathers

P0

v0

P1

v1

P2

v2

v0 v0 v0v0

v0v0

v2v0

Figure 10: Example OpenFOAM gather operation on list items
Provided by NHR4CES, SDL Energy Conversion Group 33/50

Collective comms: Scatter (One-to-all)

Make processes know about something
1 bool v = false;
2 if (Pstream::master()){ v = something(); } // <- must do on master
3 Pstream::scatter(v); // <- root process scatters

P0

v0v0

P1

v0||v1||v2

P2

v0||v1||v2v2

v1

v1

v1

Figure 11: An example OpenFOAM scatter operation (More like a MPI-Bcast)
Provided by NHR4CES, SDL Energy Conversion Group 34/50

Collective comms: Scatter (One-to-all)

Make processes know about something
1 bool v = false;
2 if (Pstream::master()){ v = something(); } // <- must do on master
3 Pstream::scatter(v); // <- root process scatters

P0

v0v0

P1

v0||v1||v2

P2

v0||v1||v2v2

v1

v1

v1

Figure 11: An example OpenFOAM scatter operation (More like a MPI-Bcast)
Provided by NHR4CES, SDL Energy Conversion Group 34/50

Collective comms: Scatter (One-to-all)

Make processes know about something (List-like)
1 List<bool> localLst(Pstream::nProcs(), false);
2 if (Pstream::master()){ forAll(localLst, ei) { localLst[ei] = something(); } }
3 Pstream::scatterList(localLst); // <- root process scatters

P0

v0v0

P1

v1

P2

v2v2

v1 v2

v1v0

v1 v2

v1v0

v0v0 v2v0

Figure 12: Example OpenFOAM scatter operation on list items
Provided by NHR4CES, SDL Energy Conversion Group 35/50

Collective comms: Scatter (One-to-all)

Make processes know about something (List-like)
1 List<bool> localLst(Pstream::nProcs(), false);
2 if (Pstream::master()){ forAll(localLst, ei) { localLst[ei] = something(); } }
3 Pstream::scatterList(localLst); // <- root process scatters

P0

v0v0

P1

v1

P2

v2v2

v1 v2

v1v0

v1 v2

v1v0

v0v0 v2v0

Figure 12: Example OpenFOAM scatter operation on list items
Provided by NHR4CES, SDL Energy Conversion Group 35/50

Collective comms: API stats

gather
41

gatherList
121

scatterList
75

scatter
146

Figure 13: Frequency of usage for each API call of OpenFOAM collective comms (v2012)

• There are also some Fork-specific interface methods we won’t discuss (eg.
Pstream::exchange)

Provided by NHR4CES, SDL Energy Conversion Group 36/50

Collective comms: Reduce (All-to-All)

Do something with a var on all processors (eg. sum them up)
1 // Second arg: a binary operation function (functors); see ops.H
2 Foam::reduce(localVar, sumOp<decltype(localVar)>());
3 localVar = Foam::returnReduce(nonVoidCall(), sumOp<decltype(localVar)>());

P0

v0 + v1 + v2v0

P1

v0 + v1 + v2v1

P2

v0 + v1 + v2v2

sumOp() sumOp()

su
mO

p(
)

Figure 14: An example OpenFOAM reduce operation (MPI-Allreduce)
Provided by NHR4CES, SDL Energy Conversion Group 37/50

Collective comms: Reduce (All-to-All)

Do something with a var on all processors (eg. sum them up)
1 // Second arg: a binary operation function (functors); see ops.H
2 Foam::reduce(localVar, sumOp<decltype(localVar)>());
3 localVar = Foam::returnReduce(nonVoidCall(), sumOp<decltype(localVar)>());

P0

v0 + v1 + v2v0 + v1 + v2

P1

v0 + v1 + v2v0 + v1 + v2

P2

v0 + v1 + v2v0 + v1 + v2

sumOp() sumOp()
su

mO
p(

)
Figure 14: An example OpenFOAM reduce operation (MPI-Allreduce)

Provided by NHR4CES, SDL Energy Conversion Group 37/50

Oh, there is a reduce here!

Figure 1: Parallel work during F1 Pit stops; CC BY 2.0, from commons.wikimedia.org

Provided by NHR4CES, SDL Energy Conversion Group 38/50

What if one of them just walks away before work is done?

Figure 1: Parallel work during F1 Pit stops; CC BY 2.0, from commons.wikimedia.org

Provided by NHR4CES, SDL Energy Conversion Group 39/50

Collective comms: Issues

You can still fall for endless loops if you’re not careful!

Infinite loops due to early returns and collective comms
1 void refineMesh(fvMesh& mesh, const label& globalNCells)
2 {
3 label currentNCells = 0;
4 do
5 {
6 // Perform calculations on all processors
7 currentNCells += addCells(mesh);
8 // On some condition, a processor should not continue, and
9 // returns control to the caller
10 if (Pstream::myProcNo() == 1) return; // <-- oops, can't do this
11 // !!! who exactly will reduce this!
12 reduce(currentNCells, sumOp<label>());
13 } while (currentNCells < globalNCells);
14 return;
15 }

Provided by NHR4CES, SDL Energy Conversion Group 40/50

Parallelization in OpenFOAM for HPC Deployment
How do I send my own data?

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

Sending around a simple struct

Say we have something like this:

Push an edge from master to All
1 struct Edge {
2 label destination = -1;
3 scalar weight = 0.0;
4 };
5 // Local edge is always initialized to (-1, 0) on all processors
6 Edge ej;
7 // Change it only on master
8 if (Pstream::master())
9 {
10 ej.destination = 16;
11 ej.weight = 5.2;
12 }
13 // Try scatter the edge from master to all processes
14 Pstream::scatter(ej);

error: No match for
operator<<(OPstream&,Edge&)
error: No match for
operator>>(IPstream&,Edge&)

Provided by NHR4CES, SDL Energy Conversion Group 41/50

Sending around a simple struct

So, Edges can’t be communicated as MPI messages, provide the necessary serialization
and de-serialization operators:

Stream Operators for Edge class
1 // Compiler wants serialization to OPStream/IPStream
2 // But we better write for the bases OStream/IStream
3 Ostream& operator<<(Ostream& os, Edge& e) {
4 os << e.destination << " " << e.weight;
5 return os;
6 }
7 Istream& operator>>(Istream& is, Edge& e) {
8 is >> e.destination;
9 is >> e.weight;
10 return is;
11 }

Info << ej;
”16 5.2”

Provided by NHR4CES, SDL Energy Conversion Group 42/50

How about sending a list of custom objects?

Gathering info about Edges on all procs
1 using Graph = List<List<Edge>>;
2 // Start with an empty graph on all processes
3 Graph g(Pstream::nProcs(), List<Edge>());
4 // Process g[Pstream::myProcNo()] locally on the corresponding proc
5 Pstream::gatherList(g);
6 Pstream::scatterList(g);
7
8 // Check graph edges on all processes
9 Pout << g << endl;

Compiles, and works as ex-
pected if Edge is modified so it
can be put in a List

A Better way: Make Edge a child of one of the OpenFOAM classes

Better ways to define an Edge
1 struct Edge : public Tuple2<label, scalar> {};
2 // That's it, Edge is now fully MPI-ready

Provided by NHR4CES, SDL Energy Conversion Group 43/50

What if the struct has a pointer?

Easiest solution -> Follow all pointers
1 struct Edge {
2 int* destination = nullptr;
3 scalar weight = 0.0;
4 };
5 Ostream& operator<<(Ostream& os, Edge& e) {
6 os << *e.destination << " " << e.weight;
7 return os;
8 }
9 Istream& operator>>(Istream& is, Edge& e) {
10 int o; is >> o; e.destination = &o;
11 is >> e.weight;
12 return is;
13 }
14 Edge ej;
15 if (Pstream::master())
16 {
17 ej.destination = &ej;
18 ej.weight = 5.2;
19 }

Hoping that all members are
deep-copyable
* Code for illustration only,
do not use raw pointers

Provided by NHR4CES, SDL Energy Conversion Group 44/50

What if the struct has a reference to the mesh?

• Unlike pointers, references in C++ need to be initialized when declared (in
constructors for members of a reference type).

• You’ll most likely have a reference to the mesh→ It’s good practice.
• The mesh is special because we know that it’s partitioned. And we want our objects
to use the mesh on the other process when we send them over!

The solution includes:

• Switch to LinkedList instead of random-access ones.
→ Why? Because they allow for passing custom constructor arguments.

• The Edge will have to get a new construction function (usually something nested in a
sub-class Edge::iNew::operator())

• We will explore this in more detail during the hands-on sessions

Provided by NHR4CES, SDL Energy Conversion Group 45/50

Parallelization in OpenFOAM for HPC Deployment
Application examples & advanced topics

Mohammed Elwardi Fadeli1,2, Holger Marschall1 and Christian Hasse2

April, 2023
1 Mathematical Modeling and Analysis (MMA)
2 Simulation of Reactive Thermo Fluid Systems (STFS)
Energy Conversion Group, NHR4CES - TU Darmstadt

Solving PDEs over decomposed domains (P2P comms)

General Transport Equation for a physical transport property

∂tφ+ ∇ · (φu)−∇ · (Γ∇φ) = Sφ(φ)

Discretized form (Finite Volume notation)

J∂t[φ]K + J∇ ·
(
F[φ]f (F,S,γ)

)
K − J∇ ·

(
Γf∇[φ]

)
K = JSI[φ]K.

• Receive neighbour values from neighbouring processor.
• Send face cell values from local domain to neighouring processor
• Interpolate to processor patch faces

Provided by NHR4CES, SDL Energy Conversion Group 46/50

Adaptive Mesh Refinement on polyhedral meshes

1. Refine each processor’s part of the mesh, but we need to keep the global cell count
under a certain value:

Reduce nAddCells or nTotalAddCells?
1 label nAddCells = 0;
2 label nIters = 0;
3 label nTotalAddCells = 0;
4 do
5 {
6 nAddCells = faceConsistentRefinement(refineCell);
7 reduce(nAddCells, sumOp<label>());
8 ++nIters;
9 nTotalAddCells += nAddCells;
10 } while (nAddCells > 0);

Provided by NHR4CES, SDL Energy Conversion Group 47/50

Adaptive Mesh Refinement on polyhedral meshes

2. To decide on whether to refine cells at processor boundaries, we need cell levels
from the other side:

ownLevel holds neiLevel after swapping!
1 // Code extracted from Foam Extend 4.1
2 labelList ownLevel(nFaces - nInternalFaces);
3 forAll (ownLevel, i)
4 {
5 const label& own = owner[i + nInternalFaces];
6 ownLevel[i] = updateOwner();
7 }
8
9 // Swap boundary face lists (coupled boundary update)
10 syncTools::swapBoundaryFaceList(mesh_, ownLevel, false);
11
12 // Note: now the ownLevel list actually contains the neighbouring level
13 // (from the other side), use alias (reference) for clarity from now on
14 const labelList& neiLevel = ownLevel;

Provided by NHR4CES, SDL Energy Conversion Group 48/50

Advanced topics

The need for Load Balancing in AMR settings

• AMR operations tend to unbalance cell count distribution accross processors
• Using Blocking comms means more idle process time

• Non-Blocking are not a solution.
• Spending some time on rebalancing the mesh is.

• Naturally, load balancing itself involves parallel communication!

Provided by NHR4CES, SDL Energy Conversion Group 49/50

Licensing

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

Code snippets are licensed under a GNU Public License.

cba 2023

This offering is not approved or endorsed by OpenCFD Limited, the producer of the
OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.

Provided by NHR4CES, SDL Energy Conversion Group 50/50

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.gnu.org/licenses/gpl.txt

Questions?

Provided by NHR4CES, SDL Energy Conversion Group 50/50

Compile and link against MPI implementations

Compiler wrappers are your best friends!

Grab correct compiler/linker flags
1 mpic++ --showme:compiler
2 mpic++ --showme:linker

-I/usr/lib/x86_64-linux-
gnu/openmpi/include/openmpi
...
-pthread -L/usr/lib/x86_64-
linux-gnu/openmpi/lib ...

OpenFOAM environment autmatically figures things out for you:

Typical Make/options file for the ESI fork

1 include $(GENERAL_RULES)/mpi-rules
2 EXE_INC = $(PFLAGS) $(PINC) ...
3 LIB_LIBS = $(PLIBS) ...

Provided by NHR4CES, SDL Energy Conversion Group

Miscellaneous

• MPI standards: Blocking send can be used with a Non-blocking receive, and
vice-versa

• But OpenFOAM wrapping makes it ”non-trivial” to get it to work

• You can still use MPI API directly, eg. if you need one-sided communication.

• Overlapping computation and communication for non-blocking calls is implemented
on the MPI side, so, put your computations after the recieve call.

Provided by NHR4CES, SDL Energy Conversion Group

Sources and further reading i

[1] C. Augustine. Introduction to Parallel Programming with MPI and OpenMP. Source of
the great ’pit stops’ analogy. Oct. 2018. url: https:
//princetonuniversity.github.io/PUbootcamp/sessions/parallel-
programming/Intro_PP_bootcamp_2018.pdf.

[2] Fabio Baruffa. Improve MPI Performance by Hiding Latency. July 2020. url:
https://www.intel.com/content/www/us/en/developer/articles/
technical/overlap-computation-communication-hpc-
applications.html.

Provided by NHR4CES, SDL Energy Conversion Group

https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf
https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf
https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/overlap-computation-communication-hpc-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/overlap-computation-communication-hpc-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/overlap-computation-communication-hpc-applications.html

Sources and further reading ii

[3] Pavanakumar Mohanamuraly, Jan Christian Huckelheim, and Jens-Dominik Mueller.
“Hybrid Parallelisation of an Algorithmically Differentiated Adjoint Solver”. In:
Proceedings of the VII European Congress on Computational Methods in Applied
Sciences and Engineering (ECCOMAS Congress 2016). Institute of Structural Analysis
and Antiseismic Research School of Civil Engineering National Technical University of
Athens (NTUA) Greece, 2016. doi: 10.7712/100016.1884.10290. url:
https://doi.org/10.7712/100016.1884.10290.

[4] B. Steinbusch. Introduction to Parallel Programming with MPI and OpenMP. Mar. 2021.
url: https://www.fz-
juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/mpi/mpi-
openmp-handouts.pdf?__blob=publicationFile.

[5] EuroCC National Competence Center Sweden. Intermediate MPI. May 2022. url:
https://enccs.github.io/intermediate-mpi/.

Provided by NHR4CES, SDL Energy Conversion Group

https://doi.org/10.7712/100016.1884.10290
https://doi.org/10.7712/100016.1884.10290
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/mpi/mpi-openmp-handouts.pdf?__blob=publicationFile
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/mpi/mpi-openmp-handouts.pdf?__blob=publicationFile
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/mpi/mpi-openmp-handouts.pdf?__blob=publicationFile
https://enccs.github.io/intermediate-mpi/

	Appendix

